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Abstract
The model under consideration is a classical 2D Coulomb gas of pointlike
positive and negative unit charges, interacting via a logarithmic potential. In
the whole stability range of temperatures, the equilibrium statistical mechanics
of this fluid model is exactly solvable via an equivalence with the integrable 2D
sine-Gordon field theory. The exact solution includes the bulk thermodynamics,
special cases of the surface thermodynamics and the large-distance asymptotic
behaviour of the two-body correlation functions.

PACS numbers: 52.25.Kn, 61.20.Gy, 05.70.−a

1. Introduction

The classical (i.e. non-quantum) equilibrium statistical mechanics deals in general with two
basic kinds of models: discrete lattice systems and continuous fluids. In one spatial dimension
(1D), both kinds of statistical models, considered with short-range as well as long-range
pairwise interactions among constituents, are solvable in many cases [1]. In 2D, there is a
large family of integrable lattice systems exactly solvable via the Bethe-ansatz method (see
[2, 3]). On the other hand, there was no exactly solved fluid in more than 1D. The only
partial exceptions were represented by 2D logarithmic models of Coulomb fluids, the one-
component plasma [4] and the symmetric two-component plasma (or Coulomb gas) [5] in the
point-particle limit, solvable at one special value of the dimensionless inverse temperature
β = 2.

The situation has changed in very recent years. In a series of works, the bulk and
surface thermodynamics as well as the large-distance asymptotic behaviour of the two-body
correlation functions were derived exactly for the 2D Coulomb gas of pointlike particles, in
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the whole stability range of inverse temperatures β < 2. These results were obtained by
mapping the Coulomb gas onto the 2D sine-Gordon theory with a conformal normalization of
the cos-field, and subsequently applying techniques and recent achievements in that integrable
theory.

The aim of this paper is to present the exact solution of the 2D Coulomb gas to the fluid
community, in the language of fluid physics and in a way accessible to non-specialists in field
theory. Unsolved problems and further potential developments are pointed out.

In section 2, we introduce the 2D Coulomb gas. Section 3 deals with its complete
bulk thermodynamics, obtained from the mapping onto the bulk sine-Gordon field theory.
Surface thermodynamic properties of a semi-infinite 2D Coulomb gas in contact with an
impermeable (ideal dielectric or ideal conductor) wall, and the corresponding mapping onto
integrable boundary sine-Gordon models are given in section 4. The large-distance asymptotic
behaviour of two-body correlation functions in the 2D Coulomb gas is presented in section 5.
Section 6 is devoted to miscellaneous topics and perspectives.

2. Basic facts about the 2D Coulomb gas

The symmetric Coulomb gas, defined in an infinite 2D space of points r ∈ R2, consists of
point particles {i} of charge {qi = ±1} immersed in a homogeneous medium of dielectric
constant = 1. The interaction energy of particles is

∑
i<j qiqjv(|ri −rj |), where the Coulomb

potential v is the solution of the 2D Poisson equation

�v(r) = −2πδ(r). (1)

Explicitly, v(r) = −ln(|r|/L) where L is a length scale. This definition of the Coulomb
potential in 2D maintains many generic properties (e.g., sum rules) of ‘real’ 3D Coulomb
fluids with the interaction potential v(r) = 1/|r|, r ∈ R3.

The model is treated as the classical one in thermodynamic equilibrium, via the grand
canonical ensemble characterized by the (dimensionless) inverse temperature β and by the
couple of particle fugacities z+(r) = z−(r) = z. We set the free length scale L to unity for
simplicity; the true dimension of the rescaled z is then [length]β/2−2. The grand partition
function is defined by

� =
∞∑

N+,N−=0

1

N+!N−!

∫ N∏
i=1

[
d2ri zqi

(ri)
]

exp


−β

∑
i<j

qiqjv(|ri − rj |)

 (2)

where N+ (N−) is the number of positive (negative) particles and N = N+ + N−. Many-particle
densities are generated from � in a standard way as functional derivatives with respect to
the fugacity field zq(r), taken at the constant z+(r) = z−(r) = z. At the one-particle level, one
introduces the number density of particles of one sign nq = 〈∑

i δq,qi
δ(r − ri)

〉
. Due to the

charge symmetry, n+ = n− = n/2 (n is the total density of particles). At the two-particle level,
one introduces the two-body densities nqq ′(|r−r′|) = 〈∑

i �=j δq,qi
δ(r−ri)δq ′,qj

δ(r′−rj )
〉
. It is

useful to consider also the pair distribution functions gqq ′(r) = nqq ′(r)/(nqnq ′), the (truncated)
correlation functions hqq ′(r) = gqq ′(r) − 1 and the Ursell functions Uqq ′(r) = nqnq ′hqq ′(r).

The underlying system of pointlike particles is stable against the collapse of positive–
negative pairs of charges provided that the corresponding Boltzmann factor r−β is integrable
at short distances in 2D, i.e. for β < 2. To cross the collapse point β = 2, the pure
Coulomb interaction has to be regularized by a short-distance repulsion, e.g., a hard-
core potential of diameter σ around each particle (the particular choice of the short-distance
regularization influences the results quantitatively, but not qualitatively). For small values of
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the dimensionless density nσ 2, the system remains in its conducting phase (an external charge
is perfectly screened by the system charges) up to the Kosterlitz–Thouless (KT) transition
of infinite order [6] at a specific density-dependent βKT; βKT = 4 in the low-density limit.
In the insulating phase β > βKT, the system charges form dipoles and no longer screen an
external charge. At high enough density, the KT critical line splits into a first-order liquid–
gas coexistence curve [7]. In what follows, we shall restrict ourselves to the point-particle
Coulomb gas in the stability region β < 2.

A complete exact analysis can be done in two cases: in the high-temperature Debye–
Hückel limit β → 0, and just at the collapse point β = 2 [5] which corresponds to the
free-fermion point of an equivalent 2D Thirring model. Although, at a given z, the free energy
diverges, Ursell functions are finite at β = 2.

As concerns exact information valid in the whole stability region β < 2, through a simple
scaling argument, the exact equation of state for the pressure P, βP = n(1 − β/4), has
been known for a long time [8]. While the density derivatives of the Helmholtz free energy,
such as the pressure, can all be calculated exactly, the temperature derivatives, such as the
internal energy or the specific heat, are nontrivial quantities. Their evaluation can be based
on an explicit density–fugacity (n, z) relationship. The latter was constructed systematically
around the β → 0 point by using a bond-renormalized Mayer expansion in density [9]: the
original bonds −βv(r) are summed up in series to produce the renormalized bonds of strength
−βK0(κr), where K0 denotes a modified Bessel function and κ = (2πβn)1/2 is the inverse
Debye length. The cluster integrals converge in the renormalized format. The first few
integrals imply

n1−β/4

z
= 2ββ/4 exp

{[
2C + ln

(π

2

)] β

4
+

7

6
ζ(3)

(
β

4

)3

+ ζ(3)

(
β

4

)4

+ O(β5)

}
(3)

where C is the Euler number and ζ denotes the Riemann zeta function.

3. Bulk thermodynamics

The 2D Coulomb gas is equivalent to the 2D sine-Gordon model [10]. Introducing the
microscopic charge density ρ̂(r) = ∑N

i=1 qiδ(r − ri), the interaction energy can be written as

E = 1

2

∫
d2r d2r ′ ρ̂(r)v(|r − r′|)ρ̂(r′) − 1

2
Nv(0). (4)

Let us forget for a while that v(0) diverges, and renormalize the fugacity by the self-energy
term exp[−βv(0)/2], without changing the z-notation. Using the fact that −�/(2π) is the
inverse operator of v(r) (see equation (1)), the grand partition function (2) with zq(r) = z can
be turned via the Hubbard–Stratonovich transformation into

�(z) =
∫
Dφ exp(−S(z))∫
Dφ exp(−S(0))

(5a)

where

S(z) =
∫

d2r

[
1

16π
(∇φ)2 − 2z cos(bφ)

]
b =

(
β

4

)1/2

(5b)

is the Euclidean action of the 2D sine-Gordon theory. Here, φ(r) is a real scalar field and
∫
Dφ

denotes the functional integration over this field. The many-particle densities are expressible
as averages over the sine-Gordon action as follows:

nq = zq〈eiqbφ〉 nqq ′(|r − r′|) = zqzq ′ 〈eiqbφ(r) eiq ′bφ(r′)〉 (6)
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etc. The parameter z in (5b), i.e. the fugacity renormalized by the diverging self-energy
term, gets a precise meaning when one fixes the normalization of the coupled cos-field.
In the Coulomb system, the behaviour of the two-body density for oppositely charged
particles is dominated at short distances by the Boltzmann factor of the Coulomb potential,
n+−(r, r′) ∼ z+z−|r − r′|−β as |r − r′| → 0. With regard to (6), the mapping is supplemented
by the short-distance normalization

〈eibφ(r) e−ibφ(r)〉 ∼ |r − r′|−4b2
as |r − r′| → 0 (7)

which was usually omitted in the statmech literature. Under this short-distance normalization,
the divergent self-energy factor disappears from statistical relations calculated within the sine-
Gordon representation. This can be easily verified in the Debye–Hückel limit β → 0, when
cos(bφ) ∼ 1 − b2φ2/2, and the consequent Gaussian field theory reproduces the n, z relation
(3) up to the linear β-term in the exponential.

In the classical limit of the sine-Gordon theory, only such configurations of the φ-
field are considered which fulfil the equation of motion δS = 0. This classical limit is
integrable [11], i.e. there exists an infinite sequence of conserved quantities. Due to the
discrete symmetry φ → φ + 2πn/b (n integer), the model has an infinite number of vacua at
φn = 2πn/b. The basic ‘particles’, the soliton S and antisoliton S̄ pair of equal masses M,
interpolate between two neighbouring vacua. The S–S̄ pair can create bound states, called
breather particles {B}. The sine-Gordon model is integrable at the full ‘quantum level’ (all
configurations of the φ-field are considered) as well [11], with the same particle spectrum.
The essential difference between the classical and quantum theories is that the breathers
become quantized, {Bj ; j = 1, 2, . . . < 1/ξ}, and their number depends on the inverse of the
parameter ξ = b2/(1 − b2). The mass of the Bj -breather is given by

mj = 2M sin

(
πξ

2
j

)
(8)

and this breather disappears from the spectrum just when mj = 2M . Note that breathers exist
only in the stability region of the Coulomb gas 0 < b2 < 1/2 (0 < β < 2). The lightest
B1-breather disappears just at b2 = 1/2 (β = 2), which is the field-theoretical manifestation
of the collapse phenomenon.

Using the thermodynamic Bethe ansatz, the dimensionless specific grand potential

lim
V →∞

1

V
ln � = m2

1

8 sin(πξ)
(9)

was found by Destri and de Vega [12]. Under the conformal normalization (7), the relationship
between the soliton mass M and the fugacity z was established in [13],

z = �(b2)

π�(1 − b2)

[
M

√
π�((1 + ξ)/2)

2�(ξ/2)

]2−2b2

(10)

where � stands for the Gamma function. Equations (8)–(10) constitute a complete set to be
solved for the exact n, z relationship [9]:

n1−β/4

z
= 2

(
πβ

8

)β/4
�(1 − β/4)

�(1 + β/4)

[
F

(
1

2
,

β

4 − β
; 1 +

β

2(4 − β)
; 1

)]1−β/4

(11)

where F ≡ 2F1 is the hypergeometric function. The expansion of the rhs around β → 0
reproduces correctly the first terms of the renormalized expansion (3). For fixed z, the
particle density given by (11) exhibits the expected collapse singularity n ∼ 4πz2/(2 − β)

as β → 2−. This behaviour can be derived independently by combining an electroneutrality
sum rule, −qnq = ∑

q ′=± q ′ ∫ d2r nqq ′(r), with the short-distance asymptotic behaviour of
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n+−(r) discussed above. Since the derivation of formula (10) was based on special analyticity
assumptions, the check of the results from both sides of the stability interval is important.
Without noticing it, such checks are made for all presented results.

Based on the explicit n, z relation, one can pass by using the Legendre transformation
from the grand canonical to the canonical ensemble, to obtain the Helmholtz free energy. We
present the explicit result for the excess specific heat at constant volume per particle [9],

cex
V

kB

= β

4
+

4

4 − β
+

β2

16

[
ψ ′

(
1 − β

4

)
− ψ ′

(
1 +

β

4

)]
− 2β2

(4 − β)3

[
ψ ′

(
2

4 − β

)

− ψ ′
(

8 − β

8 − 2β

)]
− 4π2β2

(4 − β)3

cos(πβ/(4 − β))

sin2(πβ/(4 − β))
. (12)

Here, ψ(x) = d[ln �(x)]/dx is the psi function and ψ ′(x) = ∑∞
i=0 1/(x + i)2. As β → 2−,

the cex
V

/
kB exhibits the expected singularity of type 2/(2 − β)2. Note that the specific heat is

independent of the particle density, which is a peculiarity of the 2D Coulomb gases.

4. Surface thermodynamics

Let us now consider a semi-infinite 2D Coulomb gas in the Cartesian half-space x > 0,
in contact with a hard wall of dielectric constant εW in the complementary half-space
x < 0. The presence of the dielectric wall manifests itself through particle images [14]:
the particle of charge q at position r = (x, y) has the image of charge q∗ (dependent on
εW ) at r∗ = (−x, y). We will consider two particular cases: the ideal dielectric wall
(εW = 0) with image charges q∗ = q and the ideal conductor wall (εW → ∞) with
image charges q∗ = −q . Let us introduce the microscopic charge plus image-charge density
ρ̂(r) = ∑N

i=1 qi [δ(x − xi) ± δ(x + xi)] δ(y − yi); hereinafter, the upper (+) sign corresponds
to εW = 0 and the lower (−) sign to εW → ∞. The interaction energy of the particle–image
system can be written in both cases as

E = 1

4

∫
d2r

∫
d2r ′ ρ̂(r)v(|r − r′|)ρ̂(r′) − 1

2
Nv(0) (13)

where the integrations over r and r′ are taken over the whole 2D space.
The form of the interaction energy (13) resembles that in (4), and one can proceed in close

analogy with the bulk mapping. The grand partition function is expressible as

�(z) =
∫
Dφ exp(−S(z))∫
Dφ exp(−S(0))

(14a)

where the φ-field is defined in the whole 2D space and the nonlocal action reads

S(z) =
∫

d2r

[
1

16π
(∇φ)2 − 2z cos

(
b√
2

[φ(x, y) ± φ(−x, y)]

)]
(14b)

b = √
β/4. To make this field theory local, we introduce two new fields

φe(x, y) = 1√
2
[φ(x, y) + φ(−x, y)] φo(x, y) = 1√

2
[φ(x, y) − φ(−x, y)] (15)

defined only in the positive x � 0 half-space. The ‘even’ field has a Neumann boundary
condition, ∂xφe|x=0 = 0, and the ‘odd’ field a Dirichlet boundary condition, φo|x=0 = 0.
Since

∫
d2r(∇φ)2 = ∫

x>0 d2r[(∇φe)
2 + (∇φo)

2], the fields φe and φo are decoupled in
the action (14b). The field, contributing only by its free-field part, disappears from (14a)
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by numerator–denominator cancellation. Consequently, renaming the kept field as φ, we
arrive at

�(z) =
∫
Dφ exp(−S(z))∫
Dφ exp(−S(0))

S(z) =
∫

x>0
d2r

[
1

16π
(∇φ)2 − 2z cos(bφ)

]
. (16)

Here, the φ-field has the boundary condition: φ|x=0 = 0 for the ideal conductor wall;
∂xφ|x=0 = 0 for the ideal dielectric wall. The mapping onto the boundary sine-Gordon model is
supplemented by the short-distance normalization (7). Both cases under consideration belong
to the integrable boundary field theories [15]. The thermodynamic quantity of interest is the
surface tension γ , which characterizes the surface part of the grand potential � = −β−1 ln �.

The problem of the ideal conductor wall was solved via a lattice regularization of the
boundary sine-Gordon model [16], namely the XXZ Heisenberg quantum chain in boundary
magnetic fields. The surface tension was obtained in terms of the soliton mass M as follows:

βγcond = M

4

{
1 − tan

(
πβ

2(4 − β)

)
−

[
cos

(
πβ

2(4 − β)

)]−1
}

. (17)

The surface collapse is governed by the interaction Boltzmann factor of a particle with its
self-image, x−β/2. The 1D integral

∫
dx x−β/2 diverges at short distances at point β = 2

(which coincides with the bulk collapse point), and this is indeed the radius of convergence of
γcond.

The problem of the ideal dielectric wall was solved by exploring a ‘reflection’ relationship
between the Liouville and sine-Gordon theories [17]. The result is

βγdiel = M

4

{
1 + tan

(
πβ

2(4 − β)

)
−

[
cos

(
πβ

2(4 − β)

)]−1
}

. (18)

At β = 2, γdiel keeps a finite value [18]. The analytic continuation of (18) beyond the
bulk collapse point predicts a surface collapse at β = 3. Such a phenomenon is due to the
paradoxical short-distance attraction of a particle with its own image charge of the same sign
[17].

The surface thermodynamics of a plain hard wall (εW = 1), which is the last exactly
solvable case at the free-fermion point β = 2 [19], is an open problem.

5. Large-distance behaviour of particle correlations

In a 2D integrable theory characterized by a ‘particle’ spectrum, correlation functions of local
fields can be written as an infinite convergent series over multi-particle intermediate states, in
terms of the corresponding form factors. The form-factor representation is especially useful at
large distances, since the dominant contribution of the series comes from an intermediate state
with the minimum value of the total particle mass. In the sine-Gordon theory, for topological
reasons, solitons S and antisolitons S̄ coexist in pairs, the total mass of the pair being 2M .
The breathers {Bj }, when they exist, have lighter masses (see formula (8)). The lightest
B1-breather with mass m1 = 2M sin(πξ/2), which exists in the whole stability region of the
Coulomb gas, governs the large-distance asymptotic behaviour of the two-point correlation in
(6). In particular, one has for the correlation function hqq ′ [20], as r → ∞,

hqq ′(r) ∼ qq ′h(r) h(r) = −λ

(
π

2m1r

)1/2

exp(−m1r) (19)

where λ is a β-dependent prefactor. The specific dependence of hqq ′(r) on the charge product
qq ′ means that the two-particle correlations are determined at large distance by the charge–
charge correlation function hρ(r) = 1

4

∑
q,q ′=± qq ′hqq ′(r) = h(r).
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On the other hand, the density correlation function hn = 1
4

∑
q,q ′=± hqq ′ vanishes for the

lowest one-B1-breather state, and becomes nonzero only for the next two-B1-breather states
[21]. The mass of two B1-breathers, 2m1, is smaller than that of the soliton–antisoliton pair,
2M , in the region 0 < β < 1. Consequently, as r → ∞,

hn(r) ∝
{

exp(−2m1r) for 0 < β < 1

exp(−2Mr) for 1 � β < 2.
(20)

The correlation length depends continuously on β, but its first derivative with respect to β is
discontinuous at β = 1. The large-distance exponential decay of hn is faster than that of hρ .
The two correlation lengths coincide just at the collapse point β = 2, where hρ and hn differ
from one another only by the inverse power law prefactors.

6. Miscellaneous topics and perspectives

The 2D Coulomb gas exhibits, at any temperature in the stability region, a universal finite-size
correction to the grand potential as if we had a critical theory with the conformal anomaly
number c = −1, although the particle correlation functions presented here decay exponentially.
This phenomenon follows intuitively from the sine-Gordon representation of � (5a), with the
critical massless Gaussian field theory (c = 1) in the denominator. Explicit checks of the
critical-like behaviour were done at the free-fermion β = 2 point for various geometries of
confining domains [22–24], and at any β < 2 for the sphere [25, 26] and for the disc [21].

The ultimate task is to solve exactly the 2D Coulomb gas with a short-distance (maybe
temperature-dependent) regularization of the pure Coulomb potential. We have made a first
step towards this aim by deriving the leading correction to the exact bulk thermodynamics
of pointlike charges due to the presence of the hard core of diameter σ around particles
[27]. The results, which are conjectured to be exact in the low-density limit up to β = 3,
reproduce correctly the σ -singularities of thermodynamic quantities at β = 2. They also
confirm a ‘subtraction’ mechanism of singularities between the collapse point β = 2 and the
KT transition point βKT = 4 within an ansatz proposed by Fisher et al [28] (excluding the
existence of an infinite number of intermediate phases proposed in [29]), however, predict a
different analytic structure of this ansatz. There exist candidates among integrable 1D quantum
systems, for example, the lattice sine-Gordon model [30], which, after being formulated as
a 2D Euclidean theory, might represent a Coulomb gas regularized in the whole temperature
range.

Another topic, which has attracted much attention in the last few years due to the
phenomenon of charge inversion [31], is charge asymmetry. The Coulomb gas with
|q+| = 2|q−| was solved in terms of the equivalent complex Bullough–Dodd field theory
in [32]. Here, the fundamental changes in statistics caused by the charge asymmetry (e.g.,
the same correlation length for both correlation functions hρ and hn at any stable β) were
documented. This result might be a motivation for the exact solution of the 2D one-component
plasma, which is the extreme charge-asymmetry case of the 2D Coulomb gas.
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